0.72 (4) \AA to an idealized value of $1.03 \AA$, atom $H(3)$ would be calculated to lie 0.29 (5) \AA out of the plane defined above.

Since the structures of the 7 - and 8 -chloro derivatives appear to be substantially similar, little can be concluded concerning the difference between in vitro active molecules which are also active in vivo and those which are not. Evidently, 8 -chloro substitution hinders absorption or transport without effecting a significant structural change.

The inactivity of the 4,9 -dichloro compound is readily rationalized in the light of these observations. Evidently, it is the 4 -chloro substituent which introduces the major structural changes, and these changes occur at or near the presumed active site. Although the active site in these molecules is not known, it is reasonable to assume that it involves the chemically active sites $\mathrm{N}(2), \mathrm{N}(3)$, and/or $\mathrm{N}(5)$. As is apparent from Figs. 1 and 2, approach to these sites is relatively unhindered in the 7 - and 8 -chloro derivatives, as it is in the other analogues which have been studied (Eggleston et al., 1984; Rychlewska et al., 1984). It has been determined that N, N-dimethylformamide, a small acceptor molecule, can interact strongly with $\mathrm{N}(3)$ of clofazimine in the solid state (Eggleston et al., 1984) and it seems feasible that small donor molecules could easily approach $\mathrm{N}(2)$ and/or $\mathrm{N}(5)$. Thus, in all of these active (in vitro) analogues, approach to the nitrogen atoms is unhindered and the geometry at $\mathrm{N}(3)$ is approximately constant. In the inactive 4,9 -dichloro analogue, however, approach to $N(5)$ is presumably hindered by the presence of $\mathrm{Cl}(4)$ (see Fig. 3), and the geometry and potential hydrogen-bonding capacity of the $\mathrm{N}(3)$ site are entirely different than in these other
compounds. Structural and theoretical studies on other active and inactive analogues which are currently in progress should permit us to determine which of these features is of the greater significance.

We are indebted to Dr M. L. Conalty of the Medical Research Council of Ireland for the generous gift of the samples used in this analysis. This research was supported by the University Research Council of the University of North Carolina through grant No. 43566.

References

Brasen, W. R., Holmquist, H. E. \& Benson, R. E. (1961). J. Am. Chem. Soc. 83, 3125-3135.
Browne, S. G., Harman, D. J., Waudby, H. \& McDougall, A. C. (1981). Int. J. Lepr. 49, 167-176.

Conalty, M. L. (1982). Private communication.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Eggleston, D. S., Marsh, W. E. \& Hodgson, D. J. (1984). Acta Cryst. C40, 288-292.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius. Delft.
Goldstein, P. \& Trueblood, K. N. (1967). Acta Cryst. 23, 148-156.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Jacobson, R. R. (1981). Int. J. Lepr. 49, 510.
Koetzle, T. F., Lehmann, M. S. \& Hamilton, W. C. (1973). Acta Cryst. B29, 231-236.
Levy, L. (1981). Lepr. Rev. 52, 23-26.
Morrison, N. E. \& Marley, G. M. (1976). Int. J. Lepr. 44, 475-481.
Rychlewska, U., Broom, M. B. H. \& Hodgson, D. J. (1984). Acta Cryst. C40, 1004-1007.
Shepard, C. C., Ellard, G. A., Levy, L., Opromolla, V. A., Pattyn, S. R., Peters, J. H., Rees, R. J. W. \& Waters, M. F. R. (1976). Bull. W.H.O. 53, 425-433.

(\pm)-2,3-Dihydroxy-2,3-dimethylbutanedioic Acid [(\pm)-Dimethyltartaric Acid], $\mathbf{C}_{6} \mathbf{H}_{\mathbf{1 0}} \mathbf{O}_{\mathbf{6}}$

By Eileen N. Duesler, Minerva Mondragon and Robert E. Tapscott
Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 27 February 1984; accepted 18 June 1984)

Abstract

M_{r}=178.2\), triclinic, $P \overline{1}, a=8.632$ (4), $b=10.064$ (3), $c=10.505$ (3) $\AA, \quad \alpha=114.22$ (2), β $=106.71$ (2), $\gamma=92.92(3)^{\circ}, V=782.1$ (5) $\AA^{3}, Z=4$, $D_{x}=1.51 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA, \quad \mu=$ $0 \cdot 13 \mathrm{~mm}^{-1}, F(000)=376, T=293$ (2) K, final $R=$ 0.058 for 2086 observed unique reflections. The poorly staggered conformations are $(-)$-synclinal and (+)-

0108-2701/84/111887-04\$01.50
synclinal for R, R and S, S molecules respectively. The torsion-angle deviation from perfect staggering of about 17° is toward a closer contact for the methyl substituents. As also found for the R, S (meso) modification, the $\mathrm{C}-\mathrm{C}$ bond lengths are significantly greater than those which have been determined for the parent compound, tartaric acid.
(c) 1984 International Union of Crystallography

Introduction. 2,3-Dihydroxy-2,3-dimethylbutanedioic acid, $\mathrm{HOOCC}\left(\mathrm{CH}_{3}\right)(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)(\mathrm{OH}) \mathrm{COOH}$ (dimethyltartaric acid), exists as an R, S (meso) isomer and as the R, R and S, S pair of enantiomers. Recently we reported the structure of the meso isomer (Duesler, Mondragon \& Tapscott, 1984). Here, as a continuation of studies on the stereochemistry of the tartrates and their derivatives, we report the structure of the racemic modification, (\pm)-dimethyltartaric acid.

Experimental. Dimethyltartaric acid was prepared and its isomers were separated by literature methods (Leermakers \& Vesley, 1963; Tatsumi, Izumi, Imaida, Fukuda \& Akabori, 1966). Crystal obtained by evaporation of ethyl acetate/ethanol solution, prism with dimensions $0.12 \times 0.18 \times 0.28 \mathrm{~mm}$. Syntex $P 3 / F$ diffractometer, graphite monochromator. Lattice parameters from 22 reflections ($4<2 \theta<21^{\circ}$). Empirical absorption correction based on ψ scans; min. and max. transmission coefficients 0.891 and 0.944 . $\theta-2 \theta$ scan, $(\sin \theta) / \lambda=0.01$ to $0.59 \AA^{-1}\left(1 \leq 2 \theta \leq 50^{\circ}\right.$, $\pm h, \pm k,+l)$. Three standard reflections ($400,030,004$) every 96 reflections (8% variation). 2899 reflections measured, 2708 unique ($R_{\mathrm{lnt}}=0.019$ for merge), 622 unobserved $[I<2 \cdot 0 \sigma(I)]$. No secondary-extinction correction. The space group could have been either $P 1$ or $P \overline{1}$; however, successful refinement indicated that the latter was the correct choice. All computer programs taken from the SHELXTL package (Sheldrick, 1981) and scattering-factor data from International Tables for X-ray Crystallography (1974). Structure solved by direct methods. H atoms were located from difference maps and their positions were allowed to vary but their isotropic thermal parameters were fixed at $1 \cdot 1$ times the last value of $U_{\text {eq }}$ for the atom to which they were attached. Anisotropic refinement on F of all non-H atoms with isotropic refinement of H atoms (fixed $U_{\text {iso }}$) converged to $R=0.058, w R=0.054\left[w^{-1}=\sigma(F)^{2}+\right.$ $|q| F_{o}{ }^{2}$ with $\left.q=0.00104\right], S=1.14$ for 2086 observations and 277 refined variables. Max. and min. peak heights in final difference map 0.26 and $-0.33 \mathrm{e} \AA^{-3}$. Max. and mean Δ / σ during final cycle of refinement 0.021 and 0.006 .

Discussion. The final fractional coordinates for all atoms and the $U_{\text {eq }}$ values for the non- H atoms are given in Table 1.*

The asymmetric unit consists of an enantiomeric pair of crystallographically distinct molecules connected by a hydrogen bond from a hydroxyl O atom of one to a carboxyl H of the other (Fig. 1). Like the meso isomer

[^0]Table 1. Atomic coordinates and equivalent isotropic thermal parameters for $(\pm)-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$
Coordinates in fractions of the unit-cell edge. Equivalent isotropic thermal parameters are calculated as $U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$ with the $U_{i i}$'s in an orthogonal coordinate system (Willis \& Pryor, 1975) and the original anisotropic thermal parameters defined by $\operatorname{expl}-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+\right.$ $\left.\left.2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$.

	x	${ }^{\prime}$	z	$U_{\text {eq }}\left(\AA^{2}\right)$
C(1)	0.8481 (3)	$0 \cdot 1766$ (3)	0.0470 (3)	0.029 (1)
C(2)	0.8999 (3)	0.1921 (3)	0.2059 (3)	0.026 (1)
C(3)	0.7844 (3)	0.0670 (3)	0.2077 (3)	0.028 (1)
C(4)	0.8772 (3)	0.0382 (3)	$0 \cdot 3390$ (3)	0.028 (1)
C(5)	0.9057 (4)	0.3491 (3)	0.3165 (3)	0.034 (1)
C(6)	0.6179 (4)	0.1028 (3)	0.2184 (3)	0.034 (1)
O(1)	0.9280 (3)	$0 \cdot 1316$ (3)	-0.0326 (2)	0.049 (1)
$\mathrm{O}(2)$	0.7074 (3)	0.2199 (2)	0.0091 (2)	0.040 (1)
$\mathrm{O}(3)$	1.0641 (2)	$0 \cdot 1662$ (2)	0.2419 (2)	0.033 (1)
$\mathrm{O}(4)$	0.7516 (3)	-0.0645 (2)	0.0740 (2)	0.034 (1)
$\mathrm{O}(5)$	0.9283 (3)	-0.0794 (2)	0.3163 (2)	0.042 (1)
O(6)	0.8984 (3)	0.1424 (2)	0.4694 (2)	0.043 (1)
C(7)	0.3906 (3)	0.2210 (3)	-0.4542 (3)	0.030 (1)
C(8)	0.5164 (3)	$0 \cdot 3005$ (3)	-0.2977 (3)	0.027 (1)
C(9)	0.6427 (3)	0.4239 (3)	-0.2904 (3)	0.028 (1)
C(10)	0.8017 (3)	0.4575 (3)	-0.1616 (3)	0.030 (1)
C(11)	0.4257 (4)	0.3539 (3)	-0.1866 (3)	0.035 (1)
C(12)	0.5821 (4)	0.5686 (3)	-0.2720 (4)	0.038 (2)
$\mathrm{O}(7)$	$0 \cdot 2930$ (2)	0.3066 (2)	-0.4878 (2)	0.042 (1)
$\mathrm{O}(8)$	$0 \cdot 3780$ (3)	0.0930 (2)	-0.5351 (2)	0.056 (1)
$\mathrm{O}(9)$	0.6087 (3)	0.1958 (2)	-0.2699 (2)	0.034 (1)
O(10)	0.6788 (2)	0.3678 (2)	-0.4236 (2)	0.039 (1)
O(11)	0.9281 (2)	0.4234 (2)	-0.1837 (2)	0.042 (1)
O(12)	0.7894 (3)	0.5261 (3)	-0.0310 (2)	0.045 (1)
H(5A)	0.943 (4)	0.355 (3)	0.415 (3)	
$\mathrm{H}(5 B)$	0.984 (4)	0.418 (3)	$0 \cdot 312$ (3)	
H(5C)	$0 \cdot 805$ (4)	$0 \cdot 380$ (3)	0.291 (3)	
H(6A)	0.630 (3)	0.194 (3)	0.311 (3)	
$\mathrm{H}(6 B)$	0.558 (3)	$0 \cdot 120$ (3)	0.130 (3)	
$\mathrm{H}(6 \mathrm{C})$	$0 \cdot 556$ (3)	0.024 (3)	0.215 (3)	
$\mathrm{H}(11 A)$	0.499 (3)	0.396 (3)	-0.093 (3)	
$\mathrm{H}(11 B)$	0.362 (3)	0.432 (3)	-0.196 (3)	
$\mathrm{H}(11 C)$	0.355 (3)	0.269 (3)	-0.198(3)	
$\mathrm{H}(12 A)$	0.484 (4)	$0 \cdot 545$ (3)	-0.361 (3)	
$\mathrm{H}(12 B)$	$0 \cdot 562$ (4)	0.612 (3)	-0.177(3)	
H(12C)	0.668 (4)	0.638 (3)	-0.263 (3)	
H(2)	0.685 (4)	0.204 (3)	-0.083 (4)	
H(3)	1.071 (3)	0.095 (3)	0.183 (3)	
H(4)	0.821 (4)	-0.103 (3)	0.075 (4)	
H(6)	0.956 (4)	0.124 (3)	0.550 (3)	
H(7)	0.223 (4)	0.257 (3)	-0.577 (3)	
H(9)	0.589 (3)	$0 \cdot 124$ (3)	-0.342 (3)	
H(10)	0.738 (4)	0.314 (3)	-0.420 (3)	
H(12)	0.881 (4)	0.543 (4)	0.039 (4)	

Fig. 1. View of a pair of crystallographically distinct molecules present in the racemic modification of dimethyltartaric acid. The hydrogen bond between the two molecules is shown as an open line. The thermal ellipsoids (except for the atoms which are shown as arbitrarily sized spheres) are shown at the 50% probability level.

Table 2. Bond lengths (\AA), bond angles and torsion angles (${ }^{\circ}$) involving non -H atoms with e.s.d.'s in parentheses for $(\pm)-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$

*These angles are for molecules having an S, S absolute
configuration. The remaining data are for R, R isomers.
of dimethyltartaric acid (Duesler et al., 1984), the C-C bond lengths found for (\pm)-dimethyltartaric acid (Table 2) are significantly longer than those which have been reported for corresponding parameters in four independent structures of isomers of the non-methyl-substituted parent compound (Okaya, Stemple \& Kay, 1966; Bootsma \& Schoone, 1967).

The torsion angles observed for the (\pm)-dimethyltartaric acid molecules (Table 2) are of some interest. Past studies have shown that the small deviations from planarity observed for α-hydroxycarboxylate groups are usually toward a (-)-synperiplanar* conformation (negative $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ angle) for groups containing a carbinol C atom of S absolute configuration (though unsubstituted tartaric acids seem to be an exception) (Tapscott, 1982). We see such a trend here also.

The overall conformations of the dimethyltartaric acid molecules are (-)-synclinal for the R, R enantiomers and (+)-synclinal for the S, S enantiomers. These are the same conformations found for racemic and active isomers of unsubstituted tartaric acid and its simple salts (Tapscott, 1982); however, unlike the non-methyl-substituted compounds (Tapscott, Belford

[^1]\& Paul, 1969), the two crystallographically distinct (\pm)-dimethyltartaric acid molecules are not at all well staggered. Particularly surprising about this is that the torsion-angle deviations from perfect staggering $\left(60^{\circ}\right)$ are toward a closer contact for the presumably bulkier methyl groups ($\mathrm{H}_{3} \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}$ torsion angles, 43°) than observed for H atoms of (+)-tartaric acid [53 ${ }^{\circ}$ torsion angle calculated from neutron diffraction data reported by Okaya et al. (1966)].

The crystal packing is shown in Fig. 2 and the rather complex hydrogen-bonding scheme proposed is described in Table 3. Three of the proposed interactions, all involving bifurcated bonds $[\mathrm{O}(4)-\mathrm{H}(4) \ldots$ $\mathrm{O}(5), \mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}(8)$, and $\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}(11)]$ have $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles considerably smaller than those normally found for hydrogen-bonded systems (Hamilton \& Ibers, 1968). On the other hand, these three interactions are internal to α-hydroxycarboxylate groupings and very similar associations observed for other α-hydroxycarboxylic acids have been described as hydrogen bonds (Tapscott, 1982). Each crystallographically distinct molecule is paired with a second of the same type by hydrogen bonding of carboxylic

Fig. 2. Stereoview of the crystal packing for (\pm) $-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$ as viewed down the c axis. The origin lies at the back of the upper right corner with the a axis pointing to the left, the b axis pointing to the bottom, and the c axis projecting toward the viewer. The atoms are shown as spheres of arbitrary size (C atoms, filled spheres; O atoms, larger open spheres; H atoms, smaller open spheres). For clarity, the methyl-group H atoms are not shown. Dotted lines depict hydrogen bonds.

Table 3. Distances (\AA) and angles $\left({ }^{\circ}\right)$ for hydrogen bonds

	$\mathrm{O} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(2)-\mathrm{H}(2) \cdots \mathrm{O}(9)$	$2.708(3)$	$0.87(4)$	$1.85(4)$	$169(4)$
$\mathrm{O}(3)-\mathrm{H}(3) \cdots \mathrm{O}\left(1^{\prime}\right)$	$2.919(4)$	$0.75(3)$	$2.18(4)$	$169(3)$
$\mathrm{O}(4)-\mathrm{H}(4) \cdots \mathrm{O}\left(1^{\prime}\right)$	$2.989(4)$	$0.73(3)$	$2.34(4)$	$148(4)$
$\mathrm{O}(4)-\mathrm{H}(4) \cdots \mathrm{O}(5)$	$2.633(3)$	$0.73(3)$	$2.34(4)$	$106(3)$
$\mathrm{O}(6)-\mathrm{H}(6) \cdots \mathrm{O}\left(5^{\text {li }}\right)$	$2.653(3)$	$0.94(4)$	$1.71(3)$	$174(3)$
$\mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{O}\left(3^{\text {III }}\right)$	$2.676(3)$	$0.86(2)$	$1.81(4)$	$174(3)$
$\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}(8)$	$2.652(3)$	$0.77(2)$	$2.20(4)$	$119(3)$
$\mathrm{O}(9)-\mathrm{H}(9) \cdots \mathrm{O}\left(8^{\text {iv }}\right)$	$2.818(3)$	$0.77(2)$	$2.12(4)$	$152(3)$
$\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}(11)$	$2.626(3)$	$0.77(3)$	$2.30(4)$	$107(3)$
$\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{O}\left(6^{v}\right)$	$3.094(3)$	$0.77(3)$	$2.40(3)$	$150(3)$
$\mathrm{O}(12)-\mathrm{H}(12) \cdots \mathrm{O}(11)$	$2.658(3)$	$0.86(3)$	$1.79(4)$	$180(4)$

Symmetry code: (i) $2-x, \bar{y}, \bar{z}$; (ii) $2-x, \bar{y}, 1-z$; (iii) $x-1, y$, $z-1$; (iv) $1-x, \bar{y},-1-z$; (v) $x, y, z-1$.
acid groups about a center of symmetry. These dimers are then joined laterally to other dimers of the same type. Crystallographically different molecules are joined only by the hydrogen bonds $\mathrm{O}(2)-\mathrm{H}(2) \cdots \mathrm{O}(9)$ and $\mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{O}(3)$.

We wish to acknowledge support by the Minority Biomedical Sciences Program (NIH-DRR 506 RR08139) and NSF instrument grant (CH-780921) for the $P 3 / F$ diffractometer and $R 3$ structure-determination system.

References

Bootsma, G. A. \& Schoone, J. C. (1967). Acta Cryst. 22, 522-532.
Duesler, E. N., Mondragon, M. \& Tapscott, R. E. (1984). Acta Cryst. C40, 1286-1288.

Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids, pp. 260-262. New York: Benjamin.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-101, 149, 150. Birmingham: Kynoch Press.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Leermakers, P. A. \& Vesley, G. F. (1963). J. Am. Chem. Soc. 85, 3776-3779.
Okaya, Y., Stemple, N. R. \& Kay, M. I. (1966). Acta Cryst. 21, 237-243.
Sheldrick, G. M. (1981). Nicolet SHELXTL Operations Manual. Cupertino, California: Nicolet XRD Corp.
Tapscott, R. E. (1982). Transition Metal Chemistry, Vol. 8, edited by G. A. Melson \& B. N. Figgis, pp. 253-429. New York: Marcel Dekker.
Tapscott, R. E., Belford, R. L. \& Paul, I. C. (1969). Coord. Chem. Rev. 4, 323-359.
Tatsumı, S., Izumi, Y., Imaida, M., Fukuda, Y. \& Akabori, S. (1966). Bull. Chem. Soc. Jpn, 39, 602-604.

Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.

Acta Cryst. (1984). C40, 1890-1892

Structure of Bis(phenylsulphonyl) Trisulphide, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{\mathbf{4}} \mathrm{S}_{\mathbf{5}}$

By I-Chia Chen and Yu Wang*
Department of Chemistry, National Taiwan University, Taipei, Taiwan

(Received 25 April 1984; accepted 22 June 1984)

Abstract

M_{r}=378.52\), tetragonal, $P 4_{1}{ }_{2}{ }_{1} 2, \quad a=$ 7.758 (1), $c=26.204$ (4) $\AA, V=1577 \cdot 1$ (1) $\AA^{3}, Z=4$, $D_{m}=1.56, \quad D_{x}=1.594 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.7093 \AA, \quad \mu(\mathrm{Mo} K \alpha)=0.715 \mathrm{~mm}^{-1}, \quad T=298 \mathrm{~K}$, $F(000)=776, R=0.042$ for 1146 observed reflections. The molecule contains a twofold axis. There are two kinds of S-S bond lengths: 2.026 (1) and $2 \cdot 102$ (1) \AA, the longer bonds involving the S atoms with the dioxide substituents.

Introduction. The nature of the $\mathrm{S}-\mathrm{S}$ bond has been of great interest for many decades. The structures of certain polysulphides and sulphonylsulphides were investigated by Dawson, Mathieson \& Robertson (1948) and Mathieson \& Robertson (1949). The S chain skeleton was confirmed later for various polysulphides of disulphonate $\left(\mathrm{O}_{3} \mathrm{~S}-\mathrm{S}_{n}-\mathrm{SO}_{3}\right)^{2-}$ compounds (Stewart \& Szymański, 1979a,b) and $\varphi-\mathrm{SO}_{x}-\mathrm{S}_{n}-$ $\mathrm{SO}_{y}-\varphi$ (Kiers \& Vos, 1978). In order to compare the conformation of the polysulphide chain and to understand the effect of O substituents on the $S-S$ bond, the title compound was synthesized by the method of

[^2]0108-2701/84/111890-03\$01.50

Troeger \& Hornung (1899) and characterized by structure determination.

Experimental. Crystal obtained by slow evaporation of acetic acid solution. $390 \mu \mathrm{~m}$ diameter spherical crystal. CAD-4 diffractometer. 16 reflections in 2θ range $26^{\circ}-31^{\circ}$ used in the refinement of the cell parameters. D_{m} by flotation method $\left(\mathrm{CCl}_{3} \mathrm{H} / \mathrm{CBr}_{3} \mathrm{H}\right)$. Spherical absorption correction applied. $2 \theta_{\text {max }}=70^{\circ}$, $-12 \leq h \leq 12,-42 \leq l \leq 42$, and $h>k$. Three standard reflections monitored every hour, variation less than $3 \%, 3468$ unique reflections, 1146 of which observed (including Friedel pairs) with $I \geq 2 \sigma(I)$. $R=0.042, \quad R_{w}=0.020, w=4 F_{o}^{2} / \sigma^{2}(I)$ where $\sigma^{2}(I)$ $=\left(P+t^{2} B\right)$. Structure solved by Patterson method. H atoms calculated, and then refined in the least-squares process. All non-hydrogen and H atoms refined anisotropically and isotropically, respectively. In final cycle $(\Delta / \sigma)_{\max }=0.71$. Peaks on final difference Fourier synthesis between 0.29 and $-0.30 \mathrm{e}^{-3}$. Secondary-extinction-coefficient value 0.24 (length in $\mu \mathrm{m}$). Atomic scattering factors calculated by the analytical form using the coefficients given in International Tables for X-ray Crytallography (1974); anomalous-dispersion
© 1984 International Union of Crystallography

[^0]: * Tables of structure factors, anisotropic thermal parameters and fixed H -atom thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39591 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * See Klyne \& Prelog (1960) for definitions of the conformation designations.

[^2]: * To whom correspondence should be addressed.

